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I. Introduction

Many authors have, in recent years, considered the inital-

boundary value problem

rt
u (x,t) = a(u (x,t)) + a'(t-)(u (x,r)) dTtt X X 0 x x

(1.1) + g(x,t), 0 < x < 1, t > 0

u ((x,x) Uo(X), ut(x,O) v 0 (x), 0 " x "

Su(0,t) 0, u(l,t) 0, t > 0

which arises naturally in a theory of one-dimensional nonlinear

viscoelastic deformations of a solid continua in which the stress

a at the point x, 0 _< x < 1, and the time t > 0 is given

by the constitutive relation

tI
(1.2) o(x,t) : (ux(x,t)) + j a'(t- )O(u (x,T))dt.

in (1.1), u(x,t) is the deformaLion, with associated velocity

ut(x,t) and deformation gradient ux(x,t), o(') is a non-

linear constitutive function, and a(t) gauges the memory of

the viscoelastic body; g(x,t) represents an external forcing

function, i.e., the intrinsic body force. The initial-boundary

value problem (1.1) has been studied by MacCam [1], Dafermos

and Nohei [2] and Hattori [3]. In both [1] and [2] it is proven

that under appropriate assumptions on 3(.), a(-), and g

global smooth solutions will exist if the initial data functions

u 0(-) and v(.), and their gradients, are small in an appro-

pri:Lte sense. The results in [1] are obtained by combiningAIR FORCR OpFFIOE 0F SCIETIFIC SELjr. c)
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certain energy estimates with a Rielmann invariants agunicrit

which is due, essentially, to Nishida [4] while the results

in [2] are obtained by using Matsumura's refinement [5] of tho

Courant, Fredrichs, Lewy [6] energy method; this latter paper

[2] also establishes the decay, as t , of smooth solutions

of (1.1) and is applicable to higher dimensional problems.

In Ell MacCamy conjectured that smooth (classical) solutions

of (1.1) breakdown in finite-time if the initial data is

sufficiently large; such a result is well-known Ior the damped

nonlinear wave equation

(1.3) utt(x,t) + au (x,t) a(u x(x,t)) x , a > 0

having been established by Slemrod [7] during the course of

his study of rectilinear shearing flows in a nonlinear visco-

elastic fluid. The damping mechanism in (1.1), however, is

much weaker than the stronf damping present in (1.3), where

breakdown of class C2 solutions occurs when the gradients o-

the initial-data are, pointwise, sufficiently large. Thus,

the breakdown conjecture of MacCamy appeared to remain open for

(1.1) until the recent Ph.D. thesis of liattori [3] in which

the author reformulates the evolution equatIitmi in terms of the

resolvent kernel k(t) associated with a'(t), a device due

to Dafermos and Nohel [2], reduces this equation to a damped

first order system (with forcing and convolution terms) for

u t and u, and then rewrites the resulting system in

Riemann invariant form; the author 1 31 then applies the method
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of Rozhdestvenskii [8] to the applicable first order system

of equations for the Riemann invariants, the method consisting

of showing that characteristic curves of the same family, which

start off sufficiently close together on the initial line, must

cross in finite-time ana that at the instant where these curves

cross the associated Riemann invariant must assume contradictory

values (ds one approaches the point of intersection along the

respective characteristic curvcs). Hattori's result is obtained

by assuming special forms for the inital values of the Riemann

invariants; if the result in [3] is correct then, when combined

with the global existence results in [1] and [2], it would seem

to imply that smooth solutions of (1.1) must breakdown in finite-

time when the gradients u0'(x), vx) of the initial-data are

sufficiently large in an appropriate sense, although it is not

clear (at least to this author) how large the gradients of the

data must be in [31 in order to produce breakdown of smooth

solutions. In what follows we propose to present an elementary

proof of breakdown (,Jlobal nonexistence) of classical solutions

to (1.1) which retains the basic assumptions of [1], [2], and

[3], concerning the memory function a(t) and the nonlinearity

a(C), and employs the dissipative nature of the resolvent kernel

k(t) associated with a'(t), a modified concavity (differential

inequality) argument, and a convergent integral argument to

obtan an upper bound for the time of exist nce of , smooth

sol Iution.
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2. Basic AssuTntiotiIS an art Energy L~emma

The usual assumptions on the pertinent functions appearing

in the equation (1.1) are a3 follows [1], [21:

(A) a : [0,-) - R1

a(-) E C [0,-), a,a',a",a'" bounded on [0,-)

a(t) a + A(t), a,. > 0, a(O) 1

(- )m  A (m)(t) > 0, 0 -.- t < -, m, 0,1,2

t j  A (m)(t) E LI(0,-), j,m = 0,1,2,3.

(B) a : R 1 R 1

3 11a E C (R ), o(0) 0, a'( ) _ e > 0, VC E R

(C) g: FO,-) x R + R

1 2 1
ggt E L ([0,-); L (RI))

gx g ttlgtx ( L([0,-);L (R1)).

Thc assumption (C) will not be relevant in §3 where, for the

sake of 3implicity, we take the external forcing g - 0;

in (B) we need, in fact, only require that 0 E C 1 (R). If

we introluce the resolvent kernel k(t) associated with

a'(t) via

(2.1) k(t) + (i'*k)(t) -a'(t), 0 t <

where
rt(a'k) (t) - a'(t-T).k(T)d'r



then it can be shown that k(.) C (0,-) if a(-) C 3[0,').

Further'more k(t) satisfies k, k', k" bounded on [0,-),

(m) 1
k (t) q L [O,w) m = 0,1,2 and the important dissipation

property

J v(-[) ~-Jk(T-X)v(X)dX ciT 0,
f0 D 0

(2.2)

Vt > 0, Vv(-) E L2(Ot).

In what follows we will also make the assumption that

(D) k' 2( )dx <

and we will append to (B) the mild assumption that Vr, R

and some a > 0

(2.3) (1) '( )

where Z( ) a a(p)dp. Growth restrictions of this kind on

the nonlinearity a have appeared before in studies on non-

linear elasticity [9], [10]. Using the definition (2.1) of

k(t) it is not difficult (see [2], / 2) to reduce the evolution

equation in (1.1) to

(2.4) u (xt) + -- k(t-7) t(xT)dutt(×t ft

= (u (x,t)) + (xt), . x , t > 0x x

wh(r rt

(2.5) O(x,t) =gx,t) + k(t- );(x,r)dT + k(t)v x).

fo 0



Ln §3 we will assume both that g(x,t) 0, 0 x 1, t > o

and ut (x,0), 0 t x - 1 so that P(x,t) = 0, 0 x • 1,

t > 0. We now introduce the energy functional

(2.) Et) 2(xt)dx + (u(x,t))dx226 ~ t 0 u t f

and prove the following

Lemma. For as long as smooth (classical) solutions of (1.1)

exist

ri rT
(2.'?) E(T) E(0) + ut(x,t)k(t)ut(x,O)dt dx.

Proof: We multiply (2.4) by (u (x,t) and integrate over

[0,1] [0,T), T > 0, so as to obtain

,ffut(x,t)ut(x,t)dt dx

+ t u(x,t)( - k(t-')u (x,T)dt)dt dx

0 0 0

JOO ut(x,t)(u x(x,t)) Xdt dx

+ J 0 ut(x,t)k(t)ut(x,U)d dx.

By (2.2) if ut(x,.) E L (0,T), 0 - x 1 then

0 ut(x,t)(t k(t-T)ut(x,T)dT)dt 
0

0 0

for all x, 0 ,x 1 . It therefore follows that
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i j u2(xt)dt dx

- fTfl ut(x,t)o(u× (x,t)) xdx dt

0' Tt !fT

+ J 0 ut(x,t)k(t)ut(x,O)dx dt.

integrating the first term on the right hand side of this

estimate by parts and using the boundary conditions in (1.1)

we obtain

10'2 0t)IT dx < - 0 ( x 't ) ( u ( x t))dx dt
2 J utx, 0  j 0 0 utxt Y

+ 1 o1T ut(xt)k(t)ut(xO)dt dx

-_f (j (U x, t))dx)dt
0 at 0

+ J ut (x,t)k(t)ut(x,O)dx dt

by virtue of the detin-tion )f Thus

l 1 U2 (x't)l T  dx + " (Ux(X,t)ixl T
201 T

SflT I ut(x't)k(t)ut(xO)dt dx

0 0

and the Lemma follows directly from the definition of Et);

in particular, if ut(x,O) - , 0 --- x 1 1, then for as long as

classical zolutlon; of (1.1) exist, E(t) [(0).

Q.E.D.

&i
S. .......

k~P~MOW' ~



A Di ffer'e tial i wui iity for Solutions of (1.i)

In this section we derive a basic differential inequality

which is satisfied by a simple functional defined on solutions

cf the initial-boundary value problem (1.1). By a smooth global

solution of (1.1) in this section we shall understand a function

u(x,t) ( C([0,l] x [0,-)) 9 A

where

(3.1) A {w(x,t)lw E ([0, ); L2 (01))3 1  20([0,); Li0,1))

EL 2and wt E ([0,-); L (o,i)).

Thus, if u E A, I C < such that

rl 2 2

+ J 2 (Xt)dx dt C

Our ai-r in §4 will be to show that under 4rpr 1 uK'ite assumpt_ o,-

on the initial-data there cannot exist solt ions

u(x,t) E C2([0,11 x [0,,-)) r A of (1.1). TI, thij < end, let

0, t - be arbitrarv nonnegative 'o..dtt and coL.siJCr

the functional

.1 2 )2

(3.3) U(t) u (x,t)dx + (t+ t t 0

If u(x,t) is a solution of (1.1) which belongs to the indi-

cated smoothness class then we claim the following:
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'2

[..ma. If ( x ,t ) C 2( Ci I.1× [0,'-) ) , A £V a :olut i n of

( .1) then for all t > U, U() a : gv e; by ( . 3) sati -,fies

a+2.*2 (3 C )

3.4) UU - (--") -- 2uU(E(O) + +
2 2~)

Proof: We are assuming in this section that u (x,O) 0,

0 - x c I, and that g(x,t) 0, (x,t) E [0,]] x [J,-) so

that (x,t) - 0, (x,r) E [0,1] x [0,-). Directly from (3.3)

and the form (2.4) of the evolution equation, with 4- 0,

we compute

(3.5) U(t) "2 uu tCix + '"0(t + t

t

ad

(3.F) U(t) 2 uu dx + 2 u2dx + 2t tt]0

f-

2 u(x.t)o(u (:..,t)) 6x
X x

- 2 (t-~---i k(t--'i)u (x,-c)dT dx

,I(U X t (X,l))dT +  xJJ

+ 2 I u (x,t)ix + 3

JO i~

+, 2, 2 (X I-),IX + -
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!y adding and subtracting the quantity 2 f (ux(Xt))dx

to (3.6 ) and employing the hypothesis (2.3) we obtain the

'e stinIa te

(.7) (t) 2 (xt)dx 2a (u(x,t))dx

- 2 u(Xt) k(t-T)u (xT)dt (Ix + ? .I o 1o

u[ (Ux(,t))d n( )b

We now replace -0 d in (3.7) by

f t i 2(xt)dx and obtain from (3.7)

2 0 2

(3.8) 6(t) _ (2+() u (x,t)dx - 2aE(t)

- 2 j u(x,t) -T k(t-T)ut(x,T)d'r dx + 2 .
0 0 t

Howcver, by the Lemma of §2 and our assumption that u t(x,) =0,

0 x , E(t) f E(0), t > 0 and, thus

(3. 9) Lat) > (2+a) u2(s,t)dx - 2aE(O) + 2U3

(t
- 2 -k(t-)u (x,'r)dr dx.

at t

As U(t) 2( uud) + 20)(t+ t ) we then compute that
Ats



U~t)Ut) -(L"2)J2 (t) l
2

(2+u)[ u 2 dx u 2dx - uu dx) 2

+ (2+cs)B(t+t ) ? uf dx

+ [-2 ECO) + 263 t 6(t)[ H u 2 dx + (t+t) 2]

- (2+c 2 (t+t) 2

where 6 t - ( ~ ) 3 ( ~ -~ X T d X

WJe rewrite this last estimpite as

2

(-2ctE(O) + 6(t))U(t)

+ 2W34t) - O2'czaM(-t)

+ (2+cotr/UMf) - ( 2B 2tt

(-2E(O+ 6t))~t)- aLSU(t)

where

C2+(A)RUL(t) - (+cx) 2(t+t 0~ (2C+a)~3 u2 dx >0

ji U,;u
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(3.11) U(t)LJ(t) -(cx+)b
2 t) -2cLJ(t)CE(O) + -(

2 2 2ac

By the definition of 6(t)

26( o kxt) 1 k(t-r)u (x,T)dT dx.

Thle re fore ,

~t

(3.12) L j uuXdx+ u(xt)u Jk(t~~x,T)d dxI

11 () u 2x ) ( ~ ' kdx)) xTdi

1 k(0)ICJO u 2dxj ut2dx

+ .1(1"2 cf(fkqt~ 2

fl 0 J t

+ k t k(t-E)ut (x,T)dT) JX)]

t 0

(}O [Ik(t-)d J x

;3ut, for all t <

f yL-~ f '2 X) 1 X '

by assumptionl (D).
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Therefore, for all t, 0 ' t <

(rj (  k (t- )u (xT)dT) 2dx)
J0OJO t t

(JO k'2(X)dX)( 0 0 u t (x 'T )d Td x ) "

Combining our estimates with (3.12) and using our hypothesis

that u E A we find that

6(t)_ 1 2 1- (l2xtdxI
(3.13) - sup (u (x,t)dx) [Ik(O)I sup t

2a -t 0 ) [OD) 0 st[0,

+ ( k 2( )dX) ( u2(x,.)d'rdx) ]0oj O 0 ut

C < C.

Thus, by (3.11) we have, for all t

(3.14) U(t)U(t) - ( I )U2 (t)2

- 2offl(t)(E(n) + L + Ca,) Q.E.D.

f2
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Nonexistence of a C' ,,s of S2 ootf, Solut ion:

In this section we will show that solutions

u E C2([0,11 x [0, )) n A of (1.1) cannot exist if

rl )ju'(x))dx is negative and sufficiently large in magnitude.

2
nur approach is to assume that u F C (0,1] [,-)) is a

solution of (1.1) and then derive a contradiction from the

(ifternt ial inequality (3.14). It is rather simple at this

stage to derive a restricted but still somewhat interesting fur-st

r~e: 4 1t fur if I8 Uand

E(0) F f (u(,(x))Ix < 0 with

(4.()

if' '(u;(x))dxl > 6/2 + c

then (3.14) implies that tor all t > 0

(4.2) 6(it)U(t) - (y+l)U2 (t) , 0; y = a1/2 > 0.

d2

But (4.2) is equivalent to -- (tL- (t)) 0: 0, 0 t < which
dt z

Lm.Dlie: that

( 4.3) U(t) U(0 [- (I _ -- )t " l , UL/

However, U(O) (x)dx + t2 and U'(0) 2t0 as

u t(x,O) 0 0, 0 x 1 1. Therefore, for 0 " t < - any

solution u E C2([oI] x [o,-)) (I A satisfying (4.1) is such

that the lunctionAl U(t) is boundoed rom Ie ow by a

function which blows up as

00
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u (x)dx+Bt2(4. 4) t t 0 0 ot

-0 2 y t

"7 U(t) l u2(x,t)dx + t + t22, the L 2

u(',t) cannot be finite for all t > 0 contradicting the

assumption that u(x,t) is a smooth solution of (1.1), i.e.

a solution in the class C 2([0,1] x [0,-)),q A. We state this

first result as

Theorem 1. If g(x,t) E 0, (x,t) E (0,1) x [0,-),

ut(x,O) = 0, 0 - x 1 1, then under, the hypotheses nf §2 on

a(t), k(t), and a no solution of (1.1) can exi-:t in

C2 (tO,lJ i [,=)) n A whichi satisfies (4.1).f1

A much better re-sult than Theorem I can be obtained if we

rewrite (3.14) in the form

(".1) U(t)U(t) - (y+l)b2(t) -2v2(2y+l)U(t)

where y = a/2 and v 2  (u+-)(E(G) + 012 + C ).

In the analysis that follows we will want the initial data
l(X,0) U 0(x) to be such that U 0) > iv"Uf(); this latter

condition is easily seen to be equivalent to2

(4.2) f U M '(x))dx + /? + C )(f.2)12 )x2 ot 1 ( ( ( 0 'o
10o(d+t 00

If, as before, we choose u(x) so that i'(u 0  x < 0, 0 0

then (4.2) is equivalent to

Thus it u ( C (0,i] x 10,,-)) 1. A i.; a :;olition of (1.1) then
we must have the lowr bound C + u f1 .(U;(X))dxI for
all 0 > 0.0
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(43 1jO (uo(x)dxj C. + ($12)

2 2

a0
a 0u 0 (x)dx+t 0

If we choose f u2(x)dx to be very small then
0

2 2

C + V2 - 1 2 +'

0 a 0 u0 (x)dx1 t0

K C00 + $/2 - ( ) 1 (S 1 2(xdx)+

r
.C +$(- - --+1) : C,,, -Z l ( -J ) , 1

2 0

for 3 chosen sufficientlv small. Thus for, f (X)dx and

B > 0 chosen sufficiently small the right-hand side of (4.3)

,7 iositiv, co that the condition (4.3), which requires that

( i ,(x))dxl be sufficiently large, is not vacuou3. We

now .. ... $ to be small ero;', ,11 so tl.at- C d- l -) 0
*1 '1 (')

hut i r enough 7;r th t I/j(u (x))1x! - + < .

As U((,J) :;.'t , u !- 0''UQ ~0 \

continuity U-¥ (t) < 0 or t sufficiently :mall. It

U- Y (t) o for all t > 0 then let t = t* be the first

time f,ich that C- (tC )  0; we want to show that. no such

t can exist. Since U(t) > 0, t ( [o,t"], we may rewrite

(4.1) as

2)A precise specification of what is meant by taking 8 to be

sufficiently large is given in the Remarks following Theorem 2.



~1/

(4.4) U- Y (t) :5 21v2(2y~l)u-( t) t E ro,t*].

On [O,t*), U ( (t) < 0. Thus if we multiply (4.4) through by

2U- Y (t) we obtain

2 U ¥  t) U - ¥  (t) 4 2(t) U -  (t)

which is easily seen to be equivalent to

d 2> 42 2 d (2y+l)(4.t) d-o > 4 y (t).
Integratin a- [(

Integrating this inequality over [O,t], t E [Ot*] we obtain

(4.6) [U-Y(t)] 2 - 4y 2v 2  -(2y+)(t) > H0 >

where

(4.7) Ho Y 2 U (2y+I)(0)[U (0)U2 (0)-4v 2 ] > 0

by virtue of the hypothesis (4.3). If we now write (4.6) in the

f orm

(..8) ,UiY(t) - 2yv U-(Y+/2)(t) x

{u-Y(t) + 2yVU- ( Y+ 2  > H0 > 0.

Since U- Y (t) < 0, t E [O,t), the first factor on the

left--hand side of (4.8) is negative and thus

(4.9) U- Y (t) < -2yv U- (y 1 / 2 ) (t), t < t*

.
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By continuity this last relation must hold at t t thus

contradicting the assumption that U-Y (t*) = 0. Hence,

U- ¥ (t) < 0 for all t > 0 if u ( C2([0,LJ x [0,)) II A is

a solution of (1.1). The estimates (4.6) and (4.9) are,

therefore, also valid for all t > 0 if u E C2 (10,l11 [0,x)) ,' A.

Clearly we may rewrite the estimate (4.6) in the form

(4.10) [-yu-(+I)(t)U(t)]2  > H0 + 4y 2v2 U-(2 +)(L)

from which it follows that

I-yU(Ypl(t) (t)I (H0+4y 2v2 U- (2y+l)(t))1
/ 2

However, - .Y+l)(t)U(t) < 0, t > 0, so this last egtimate

is equivalent to

(4.11) (4(t) ( 2Ut) + '0Y
- 2  U2(y+l)) I / 2

if we let T > 9 and integrate (4.11) over, [0,T) we obtain

the estimate

U(T) dV

2'.2 T) 2T + 1T
fU(O) (4\QV+Ho 0Y- V

Since the integral on the right-hand side( of (4.12) is con-

vergent, for all nonnegative values of (T), tuie estimate

(4.12) clearly implies that T < tm x < , thus contradicting

our assumption that u C2 ([0,1] x [0,,,)) 11 A i7 a solution

of (1.1); this last estimate also provides an upper bound on

the maximal time interval [O,t ] of existence of a smoothmax
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siolution of (1.1). We state our result as

1heorem 2. If u (x)dx is chosen sufficiently small

while fl (u'(x))dx < 0 with Ijf' Y(uo (x))dx l sufficiently

large then no solution of (1.1) can exist in the class

2C ([0,1] x [0,-)) A A and the maximal time of existence of a

smooth solution must satisfy the estimate

t _ o dU

max < U(O) (4%,2 +H oy- 2U2(Y+l))I / 2

Remarks. We elaborate briefly here on the hypothesis of

Theorem 2. If fI u2 (x)dx is chosen sufficiently small then
(4.3) will be satisfied provided If' Y(u(x))x >c, + -(

We view this latter condition as follows: Suppose that

u E C 9 ([0,i] × [0,oo)) (1 A is a solution of (1.1) corresponding

to a specification of u(x,0) = u 0x). Then we may certainly

choose 6, 0 < 6 < 1, so small that Ifo 1u(x))dxI > C.

If we now choose 6 so large that

6C > - 1+

c0 (-6)
i.e., if we take 6 then for thi. er'icce of 3 wc

would have 1j'0 lCuo X))dX C - B Which il tUrn

leads to a contradiction of the assumpt:ion that.

r- C 2 ([0,1] x [0, ')) ft A.

:1;
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